skip to main content

137) Jones, R.; Lai, Y.; Guevarra, D.; Kan, K.; Haber, J.; Gregoire, J. M. Accelerated Screening of Gas Diffusion Electrodes for Carbon Dioxide Reduction. ChemRxiv March 11, 2024. https://doi.org/10.26434/chemrxiv-2024-m8dtd.

136) Watkins, N. B.; Lai, Y.; Schiffer, Z. J.; Canestraight, V. M.; Atwater, H. A.; Agapie, T.; Peters, J. C.; Gregoire, J. M. Electrode Surface Heating with Organic Films Improves CO2 Reduction Kinetics on Copper. ACS Energy Lett. 2024, 1440–1445. https://doi.org/10.1021/acsenergylett.4c00204.

135) Statt, M. J.; Rohr, B. A.; Guevarra, D.; Suram, S. K.; Gregoire, J. M. Event-Driven Data Management with Cloud Computing for Extensible Materials Acceleration Platforms. Digital Discovery 2024, 3 (2), 238–242. https://doi.org/10.1039/D3DD00220A.

134) Kan, K.; Guevarra, D.; Zhou, L.; Jones, R.; Lai, Y.; Richter, M.; Gregoire, J. M. Accelerated Characterization of Electrode-Electrolyte Equilibration. ChemCatChem 2023 e202301300. https://doi.org/10.1002/cctc.202301300.

133) Zhou, L.; Shinde, A.; Chang, M.-C.; Dover, R. B. van; Thompson, M. O.; Gregoire, J. M. High Throughput Identification of Complex Rutile Alloys for the Acidic Oxygen Evolution Reaction. J. Mater. Chem. A 2023, 11 (46), 25262–25267. https://doi.org/10.1039/D3TA04899C..

132) Guevarra, D.; Kan, K.; Lai, Y.; Jones, R. J. R.; Zhou, L.; Donnelly, P.; Richter, M.; Stein, H. S.; Gregoire, J. M. Orchestrating Nimble Experiments across Interconnected Labs. Digital Discovery 2023. https://doi.org/10.1039/D3DD00166K.

131) Statt, M. J.; Rohr, B. A.; Guevarra, D.; Breeden, J.; Suram, S. K.; Gregoire, J. M. The Materials Experiment Knowledge Graph. Digital Discovery 2023. https://doi.org/10.1039/D3DD00067B. video: Demonstrating MekG

130) Statt, M. J.; Rohr, B. A.; Brown, K.; Guevarra, D.; Hummelshøj, J.; Hung, L.; Anapolsky, A.; Gregoire, J. M.; Suram, S. K. ESAMP: Event-Sourced Architecture for Materials Provenance Management and Application to Accelerated Materials Discovery. Digital Discovery 2023, 2 (4), 1078–1088. https://doi.org/10.1039/D3DD00054K.

129) Watkins, N. B.; Schiffer, Z. J.; Lai, Y.; Musgrave, C. B. I.; Atwater, H. A.; Goddard, W. A. I.; Agapie, T.; Peters, J. C.; Gregoire, J. M. Hydrodynamics Change Tafel Slopes in Electrochemical CO2 Reduction on Copper. ACS Energy Lett. 2023, 2185–2192. https://doi.org/10.1021/acsenergylett.3c00442.

128) Gregoire, J. M.; Zhou, L.; Haber, J. A. Combinatorial Synthesis for AI-Driven Materials Discovery. Nat. Synth 2023, 2 (6), 493–504. https://doi.org/10.1038/s44160-023-00251-4. preprint.

127) Statt, M. J.; Rohr, B. A.; Guevarra, D.; Suram, S. K.; Morrell, T. E.; Gregoire, J. M. The Materials Provenance Store. Sci Data 2023, 10 (1), 184. https://doi.org/10.1038/s41597-023-02107-0. preprint

126) Rao, K. K.; Zhou, L.; Lai, Y.; Richter, M.; Li, X.; Lu, Y.; Yano, J.; Gregoire, J. M.; Bajdich, M. Resolving Atomistic Structure and Oxygen Evolution Activity in Nickel Antimonates. J. Mater. Chem. A 2022. https://doi.org/10.1039/D2TA08854A.

125) Zhou, L.; Peterson, E. A.; Richter, M. H.; Lai, Y.; Neaton, J. B.; Gregoire, J. M. Fe Substitutions Improve Spectral Response of Bi2WO6-Based Photoanodes. ACS Appl. Energy Mater. 2022, 5 (12), 15333–15344. https://doi.org/10.1021/acsaem.2c02964.

124) Zhou, L.; Wang, Y.; Kan, K.; Lucana, D. M.; Guevarra, D.; Lai, Y.; Gregoire, J. M. Surveying Metal Antimonate Photoanodes for Solar Fuel Generation. ACS Sustainable Chem. Eng. 2022, 10 (48), 15898–15908. https://doi.org/10.1021/acssuschemeng.2c05239.

124) Zhou, Lan; Wang, Yu; Kan, Kevin; Lucana, Daphne; Guevarra, Dan; Lai, Yungchieh; Gregoire, John M. Surveying metal antimonate photoanodes for solar fuel generation. ACS Sustainable Chemistry & Engineering, accepted.

123) Stevens, M. B.; Anand, M.; Kreider, M. E.; Price, E. K.; Zeledón, J. Z.; Wang, L.; Peng, J.; Li, H.; Gregoire, J. M.; Hummelshøj, J.; Jaramillo, T. F.; Jia, H.; Nørskov, J. K.; Roman-Leshkov, Y.; Shao-Horn, Y.; Storey, B. D.; Suram, S. K.; Torrisi, S. B.; Montoya, J. H. New Challenges in Oxygen Reduction Catalysis: A Consortium Retrospective to Inform Future Research. Energy Environ. Sci. 2022, 15 (9), 3775–3794. https://doi.org/10.1039/D2EE01333A.

122) Zhou, L.; Peterson, E. A.; Rao, K. K.; Lu, Y.; Li, X.; Lai, Y.; Bauers, S. R.; Richter, M. H.; Kan, K.; Wang, Y.; Newhouse, P. F.; Yano, J.; Neaton, J. B.; Bajdich, M.; Gregoire, J. M. Addressing Solar Photochemistry Durability with an Amorphous Nickel Antimonate Photoanode. Cell Reports Physical Science 2022, 3 (7), 100959. https://doi.org/10.1016/j.xcrp.2022.100959.

121) Zhou, L.; Guevarra, D.; Gregoire, J. M. High Throughput Discovery of Enhanced Visible Photoactivity in Fe-Cr Vanadate Solar Fuels Photoanodes. J. Phys. Energy 2022, 4 (4), 044001. https://doi.org/10.1088/2515-7655/ac817e.

120) Greenaway, A. L.; Ke, S.; Culman, T.; Talley, K. R.; Mangum, J. S.; Heinselman, K. N.; Kingsbury, R. S.; Smaha, R. W.; Gish, M. K.; Miller, E. M.; Persson, K. A.; Gregoire, J. M.; Bauers, S. R.; Neaton, J. B.; Tamboli, A. C.; Zakutayev, A. Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications. J. Am. Chem. Soc. 2022, 144 (30), 13673–13687. https://doi.org/10.1021/jacs.2c04241.

119) Yano, J.; Gaffney, K. J.; Gregoire, J. M.; Hung, L.; Ourmazd, A.; Schrier, J.; Sethian, J. A.; Toma, F. M. The Case for Data Science in Experimental Chemistry: Examples and Recommendations. Nat Rev Chem 2022, 6 (5), 357–370. https://doi.org/10.1038/s41570-022-00382-w.

118) Segev, G.; Kibsgaard, J.; Hahn, C.; Xu, Z. J.; Cheng, W.-H. (Sophia); Deutsch, T. G.; Xiang, C.; Zhang, J. Z.; Hammarström, L.; Nocera, D. G.; Weber, A. Z.; Agbo, P.; Hisatomi, T.; Osterloh, F. E.; Domen, K.; Abdi, F. F.; Haussener, S.; Miller, D. J.; Ardo, S.; McIntyre, P. C.; Hannappel, T.; Hu, S.; Atwater, H.; Gregoire, J. M.; Ertem, M. Z.; Sharp, I. D.; Choi, K.-S.; Lee, J. S.; Ishitani, O.; Ager, J. W.; Prabhakar, R. R.; Bell, A. T.; Boettcher, S. W.; Vincent, K.; Takanabe, K.; Artero, V.; Napier, R.; Cuenya, B. R.; Koper, M. T. M.; Krol, R. V. D.; Houle, F. The 2022 Solar Fuels Roadmap. J. Phys. D: Appl. Phys. 2022, 55 (32), 323003. https://doi.org/10.1088/1361-6463/ac6f97.

117) Guevarra, D.; Zhou, L.; Richter, M. H.; Shinde, A.; Chen, D.; Gomes, C. P.; Gregoire, J. M. Materials Structure–Property Factorization for Identification of Synergistic Phase Interactions in Complex Solar Fuels Photoanodes. npj Comput Mater 2022, 8 (1), 1–7. https://doi.org/10.1038/s41524-022-00747-1.

116) Lai, Y.; Watkins, N. B.; Muzzillo, C.; Richter, M.; Kan, K.; Zhou, L.; Haber, J. A.; Zakutayev, A.; Peters, J. C.; Agapie, T.; Gregoire, J. M. Molecular Coatings Improve the Selectivity and Durability of CO2 Reduction Chalcogenide Photocathodes. ACS Energy Lett. 2022, 7 (3), 1195–1201. https://doi.org/10.1021/acsenergylett.1c02762.

115) Kong, S.; Ricci, F.; Guevarra, D.; Neaton, J. B.; Gomes, C. P.; Gregoire, J. M. Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings. Nat Commun 2022, 13 (1), 1–12. https://doi.org/10.1038/s41467-022-28543-x.

114) Zhou, L.; Li, H.; Lai, Y.; Richter, M.; Kan, K.; Haber, J. A.; Kelly, S.; Wang, Z.; Lu, Y.; Kim, R. S.; Li, X.; Yano, J.; Nørskov, J. K.; Gregoire, J. M. Stability and Activity of Cobalt Antimonate for Oxygen Reduction in Strong Acid. ACS Energy Lett. 2022, 993–1000. https://doi.org/10.1021/acsenergylett.1c02673.

113) Rao, K. K.; Lai, Y.; Zhou, L.; Haber, J. A.; Bajdich, M.; Gregoire, J. M. Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Codesign. Chem. Mater. 2022, 34 (3), 899–910. https://doi.org/10.1021/acs.chemmater.1c04120.

112) Rahmanian, F.; Flowers, J.; Guevarra, D.; Richter, M.; Fichtner, M.; Donnely, P.; Gregoire, J. M.; Stein, H. S. Enabling Modular Autonomous Feedback-Loops in Materials Science through Hierarchical Experimental Laboratory Automation and Orchestration. Advanced Materials Interfaces 2022, 2101987. https://doi.org/10.1002/admi.202101987.

111) Guevarra, D.; Haber, J. A.; Wang, Y.; Zhou, L.; Kan, K.; Richter, M. H.; Gregoire, J. M. High Throughput Discovery of Complex Metal Oxide Electrocatalysts for the Oxygen Reduction Reaction. Electrocatalysis 2022, 13 (1), 1–10. https://doi.org/10.1007/s12678-021-00694-3.

110) Ament, S.; Amsler, M.; Sutherland, D. R.; Chang, M.-C.; Guevarra, D.; Connolly, A. B.; Gregoire, J. M.; Thompson, M. O.; Gomes, C. P.; Dover, R. B. van. Autonomous Materials Synthesis via Hierarchical Active Learning of Nonequilibrium Phase Diagrams. Science Advances 2021. https://doi.org/10.1126/sciadv.abg4930.

109) Lai, Y.; Watkins, N. B.; Rosas-Hernández, A.; Thevenon, A.; Heim, G. P.; Zhou, L.; Wu, Y.; Peters, J. C.; Gregoire, J. M.; Agapie, T. Breaking Scaling Relationships in CO2 Reduction on Copper Alloys with Organic Additives. ACS Cent. Sci. 2021, 7 (10), 1756–1762. https://doi.org/10.1021/acscentsci.1c00860.

108) Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D. U.; Wang, L.; Hubert, M. A.; Aviles Acosta, J. E.; Gregoire, J. M.; Duoss, E. B.; Baker, S.; Beck, V. A.; Spormann, A. M.; Fontecave, M.; Hahn, C.; Jaramillo, T. F. Designing a Zn–Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond. Advanced Materials 2021, 2103963. https://doi.org/10.1002/adma.202103963.

107) Chen, D.; Bai, Y.; Ament, S.; Zhao, W.; Guevarra, D.; Zhou, L.; Selman, B.; van Dover, R. B.; Gregoire, J. M.; Gomes, C. P. Automating Crystal-Structure Phase Mapping by Combining Deep Learning with Constraint Reasoning. Nat Mach Intell 2021, 3 (9), 1–11. https://doi.org/10.1038/s42256-021-00384-1. video: conference presentation on DRNets and its predecessors

106) Richter, M. H.; Peterson, E. A.; Zhou, L.; Shinde, A. A.; Newhouse, P. F.; Yan, Q.; Fackler, S. W.; Yano, J.; Cooper, J. K.; Persson, K. A.; Neaton, J. B.; Gregoire, J. M. Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates. Chem. Mater. 2021. https://doi.org/10.1021/acs.chemmater.1c01415.

105) Yang, L.; Haber, J. A.; Armstrong, Z.; Yang, S. J.; Kan, K.; Zhou, L.; Richter, M. H.; Roat, C.; Wagner, N.; Coram, M.; Berndl, M.; Riley, P.; Gregoire, J. M. Discovery of Complex Oxides via Automated Experiments and Data Science. PNAS 2021, 118 (37). https://doi.org/10.1073/pnas.2106042118.

104) Kong, S.; Guevarra, D.; Gomes, C. P.; Gregoire, J. M. Materials Representation and Transfer Learning for Multi-Property Prediction. Applied Physics Reviews 2021, 8 (2), 021409. https://doi.org/10.1063/5.0047066

103) Stach, E.; DeCost, B.; Kusne, A. G.; Hattrick-Simpers, J.; Brown, K. A.; Reyes, K. G.; Schrier, J.; Billinge, S.; Buonassisi, T.; Foster, I.; Gomes, C. P.; Gregoire, J. M.; Mehta, A.; Montoya, J.; Olivetti, E.; Park, C.; Rotenberg, E.; Saikin, S. K.; Smullin, S.; Stanev, V.; Maruyama, B. Autonomous Experimentation Systems for Materials Development: A Community Perspective. Matter 2021. https://doi.org/10.1016/j.matt.2021.06.036.

102) Li, H.; Kelly, S.; Guevarra, D.; Wang, Z.; Wang, Y.; Haber, J. A.; Anand, M.; Gunasooriya, G. T. K. K.; Abraham, C. S.; Vijay, S.; Gregoire, J. M.; Nørskov, J. K. Analysis of the Limitations in the Oxygen Reduction Activity of Transition Metal Oxide Surfaces. Nat Catal 2021, 4 (6), 463–468. https://doi.org/10.1038/s41929-021-00618-w.

101) Wang, L.; Peng, H.; Lamaison, S.; Qi, Z.; Koshy, D. M.; Stevens, M. B.; Wakerley, D.; Zamora Zeledón, J. A.; King, L. A.; Zhou, L.; Lai, Y.; Fontecave, M.; Gregoire, J. M.; Abild-Pedersen, F.; Jaramillo, T. F.; Hahn, C. Bimetallic Effects on Zn-Cu Electrocatalysts Enhance Activity and Selectivity for the Conversion of CO2 to CO. Chem Catalysis 2021. https://doi.org/10.1016/j.checat.2021.05.006.

100) Zhang, Z.; Lindley, S. A.; Guevarra, D.; Kan, K.; Shinde, A.; Gregoire, J. M.; Han, W.; Xie, E.; Haber, J. A.; Cooper, J. K. Fermi Level Engineering of Passivation and Electron Transport Materials for P-Type CuBi2O4 Employing a High-Throughput Methodology. Advanced Functional Materials 2020, 30 (24), 2000948. https://doi.org/10.1002/adfm.202000948.

99) Sutherland, D. R.; Connolly, A. B.; Amsler, M.; Chang, M.-C.; Gann, K. R.; Gupta, V.; Ament, S.; Guevarra, D.; Gregoire, J. M.; Gomes, C. P.; Bruce van Dover, R.; Thompson, M. O. Optical Identification of Materials Transformations in Oxide Thin Films. ACS Comb. Sci. 2020, 22 (12), 887–894. https://doi.org/10.1021/acscombsci.0c00172.

98) Newhouse, P. F.; Zhou, L.; Umehara, M.; Boyd, D. A.; Soedarmadji, E.; Haber, J. A.; Gregoire, J. M. Bi Alloying into Rare Earth Double Perovskites Enhances Synthesizability and Visible Light Absorption. ACS Comb. Sci. 2020, 22 (12), 895–901. https://doi.org/10.1021/acscombsci.0c00177.

97) Zhou, L.; Shinde, A.; Newhouse, P. F.; Guevarra, D.; Wang, Y.; Lai, Y.; Kan, K.; Suram, S. K.; Haber, J. A.; Gregoire, J. M. Quaternary Oxide Photoanode Discovery Improves the Spectral Response and Photovoltage of Copper Vanadates. Matter 2020. https://doi.org/10.1016/j.matt.2020.08.031.

96) Newhouse, P. F.; Guevarra, D.; Zhou, L.; Wang, Y.; Umehara, M.; Boyd, D. A.; Gregoire, J. M.; Haber, J. A. Enhanced Bulk Transport in Copper Vanadate Photoanodes Identified by Combinatorial Alloying. Matter 2020. https://doi.org/10.1016/j.matt.2020.08.032.

95) Umehara, M.; Zhou, L.; Haber, J. A.; Guevarra, D.; Kan, K.; Newhouse, P. F.; Gregoire, J. M. Combinatorial Synthesis of Oxysulfides in the Lanthanum–Bismuth-Copper System. ACS Comb. Sci. 2020, 22 (6), 319–326. https://doi.org/10.1021/acscombsci.0c00015.

94) Zhou, L.; Shinde, A.; Guevarra, D.; Richter, M. H.; Stein, H. S.; Wang, Y.; Newhouse, P.; Persson, K.; Gregoire, J. M., Combinatorial screening yields discovery of 29 metal oxide photoanodes for solar fuel generation. Journal of Materials Chemistry A 2020, 8, 4239–4243. https://doi.org/10.1039/C9TA13829C

93) Yao, Y.; Huang, Z.; Li, T.; Wang, H.; Liu, Y.; Stein, H. S.; Mao, Y.; Gao, J.; Jiao, M.; Dong, Q.; Dai, J.; Xie, P.; Xie, H.; Lacey, S. D.; Takeuchi, I.; Gregoire, J. M.; Jiang, R.; Wang, C.; Taylor, A. D.; Shahbazian-Yassar, R.; Hu, L., High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sciences 2020, 117 (12), 6316. https://doi.org/10.1073/pnas.1903721117

92) Rohr, B.; Stein, H. S.; Guevarra, D.; Wang, Y.; Haber, J. A.; Aykol, M.; Suram, S. K.; Gregoire, J. M., Benchmarking the acceleration of materials discovery by sequential learning. Chemical Science 2020, 11 (10), 2696-2706. https://doi.org/10.1039/C9SC05999G

91) Ament, S. E.; Stein, H. S.; Guevarra, D.; Zhou, L.; Haber, J. A.; Boyd, D. A.; Umehara, M.; Gregoire, J. M.; Gomes, C. P. Multi-Component Background Learning Automates Signal Detection for Spectroscopic Data. npj Comput Mater 2019, 5 (1), 77. https://doi.org/10.1038/s41524-019-0213-0.

90) Gomes, C.; Dietterich, T.; Barrett, C.; Conrad, J.; Dilkina, B.; Ermon, S.; Fang, F.; Farnsworth, A.; Fern, A.; Fern, X.; Fink, D.; Fisher, D.; Flecker, A.; Freund, D.; Fuller, A.; Gregoire, J. M.; Hopcroft, J.; Kelling, S.; Kolter, Z.; Powell, W.; Sintov, N.; Selker, J.; Selman, B.; Sheldon, D.; Shmoys, D.; Tambe, M.; Wong, W.-K.; Wood, C.; Wu, X.; Xue, Y.; Yadav, A.; Yakubu, A.-A.; Zeeman, M. L., Computational sustainability: computing for a better world and a sustainable future. Commun. ACM 2019, 62 (9), 56–65. http://doi.org/10.1145/3339399

89) Lai, Y.; Jones, R. J. R.; Wang, Y.; Zhou, L.; Richter, M. H.; Gregoire, J. M., The sensitivity of Cu for electrochemical carbon dioxide reduction to hydrocarbons as revealed by high throughput experiments. Journal of Materials Chemistry A 2019, 7 (47), 26785-26790. https://doi.org/10.1039/C9TA10111J

88) Noh, J.; Kim, J.; Stein, H. S.; Sanchez-Lengeling, B.; Gregoire, J. M.; Aspuru-Guzik, A.; Jung, Y., Inverse Design of Solid-State Materials via a Continuous Representation. Matter 2019, 1 (5), 1370-1384. http://doi.org/10.1016/j.matt.2019.08.017

87) Aykol, M.; Hummelshøj, J. S.; Anapolsky, A.; Aoyagi, K.; Bazant, M. Z.; Bligaard, T.; Braatz, R. D.; Broderick, S.; Cogswell, D.; Dagdelen, J.; Drisdell, W.; Garcia, E.; Garikipati, K.; Gavini, V.; Gent, W. E.; Giordano, L.; Gomes, C. P.; Gomez-Bombarelli, R.; Balaji Gopal, C.; Gregoire, J. M.; Grossman, J. C.; Herring, P.; Hung, L.; Jaramillo, T. F.; King, L.; Kwon, H.-K.; Maekawa, R.; Minor, A. M.; Montoya, J. H.; Mueller, T.; Ophus, C.; Rajan, K.; Ramprasad, R.; Rohr, B.; Schweigert, D.; Shao-Horn, Y.; Suga, Y.; Suram, S. K.; Viswanathan, V.; Whitacre, J. F.; Willard, A. P.; Wodo, O.; Wolverton, C.; Storey, B. D., The Materials Research Platform: Defining the Requirements from User Stories. Matter 2019, 1 (6), 1433-1438. http://doi.org/10.1016/j.matt.2019.10.024

86) Noh, J.; Kim, S.; Gu, G. h.; Shinde, A.; Zhou, L.; Gregoire, J. M.; Jung, Y., Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments. Chemical Communications 2019, 55, 13418-13421. http://doi.org/10.1039/C9CC06736A

85) Stein, H. S.; Gregoire, J. M., Progress and prospects for accelerating materials science with automated and autonomous workflows. Chemical Science 2019, 10 (42), 9640-9649. http://doi.org/10.1039/C9SC03766G

84) Soedarmadji, E.; Stein, H. S.; Suram, S.; Guevarra, D.; Gregoire, J. M., Tracking materials science data lineage to manage millions of materials experiments and analyses. npj Computational Materials 2019, 10.1038/s41524-019-0216-x.

83) Lai, Y.; Jones, R. J. R.; Wang, Y.; Zhou, L.; Gregoire, J. M., Scanning Electrochemical Flow Cell with Online Mass Spectroscopy for Accelerated Screening of Carbon Dioxide Reduction Electrocatalysts. ACS Combinatorial Science 2019. http://doi.org/10.1021/acscombsci.9b00130

82) Gomes, C. P.; Selman, B.; Gregoire, J. M., Artificial intelligence for materials discovery. MRS Bulletin 2019, 44 (7), 538-544. http://doi.org/10.1557/mrs.2019.158

81) Gomes, C. P.; Bai, J.; Xue, Y.; Björck, J.; Rappazzo, B.; Ament, S.; Bernstein, R.; Kong, S.; Suram, S. K.; van Dover, R. B.; Gregoire, J. M., CRYSTAL: a multi-agent AI system for automated mapping of materials' crystal structures. MRS Communications 2019, 1-9. http://doi.org/10.1557/mrc.2019.50

80) Stein, H. S.; Guevarra, D.; Shinde, A.; Jones, R. J. R.; Gregoire, J. M.; Haber, J. A., Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space. Materials Horizons 2019. http://doi.org/10.1039/C8MH01641K

79) Liu, G.; Eichhorn, J.; Jiang, C.-M.; Scott, M. C.; Hess, L. H.; Gregoire, J. M.; Haber, J. A.; Sharp, I. D.; Toma, F. M., Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO4 overlayers. Sustainable Energy & Fuels 2019, 3 (1), 127-135. http://doi.org/10.1039/C8SE00473K

78) Umehara, M.; Stein, H. S.; Guevarra, D.; Newhouse, P. F.; Boyd, D. A.; Gregoire, J. M., Analyzing machine learning models to accelerate generation of fundamental materials insights. npj Computational Materials 2019, 5 (1), 34. http://doi.org/10.1038/s41524-019-0172-5

77) Singh, A. K.; Montoya, J. H.; Gregoire, J. M.; Persson, K. A., Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nature Communications 2019, 10 (1), 443. http://doi.org/10.1038/s41467-019-08356-1

76) Stein, H. S.; Soedarmadji, E.; Newhouse, P. F.; Dan, G.; Gregoire, J. M., Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides. Scientific Data 2019, 6 (1), 9. http://doi.org/10.1038/s41597-019-0019-4

75) Stein, H. S.; Guevarra, D.; Newhouse, P. F.; Soedarmadji, E.; Gregoire, J. M., Machine learning of optical properties of materials – predicting spectra from images and images from spectra. Chemical Science 2019, 10 (1), 47-55. http://doi.org/10.1039/C8SC03077D

74) Newhouse, P. F.; Guevarra, D.; Umehara, M.; Boyd, D. A.; Zhou, L.; Cooper, J. K.; Haber, J. A.; Gregoire, J. M., Multi-modal optimization of bismuth vanadate photoanodes via combinatorial alloying and hydrogen processing. Chemical Communications 2019, 55 (4), 489-492. http://doi.org/10.1039/C8CC07156J

73) Jones, R. J. R.; Wang, Y.; Lai, Y.; Shinde, A.; Gregoire, J. M., Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction. Review of Scientific Instruments 2018, 89 (12), 124102. http://doi.org/10.1063/1.5049704

72) Zhou, L.; Shinde, A.; Montoya, J. H.; Singh, A.; Gul, S.; Yano, J.; Ye, Y.; Crumlin, E. J.; Richter, M. H.; Cooper, J. K.; Stein, H. S.; Haber, J. A.; Persson, K. A.; Gregoire, J. M., Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid. ACS Catalysis 2018, 10938-10948. http://doi.org/10.1021/acscatal.8b02689

71) Zhou, L.; Shinde, A.; Suram, S. K.; Stein, H. S.; Bauers, S. R.; Zakutayev, A.; DuChene, J. S.; Liu, G.; Peterson, E. A.; Neaton, J. B.; Gregoire, J. M., Bi-Containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a Sub-2 eV Band Gap Photoanode. ACS Energy Letters 2018, 3 (11), 2769-2774. http://doi.org/10.1021/acsenergylett.8b01514

70) Zhou, L.; Shinde, A.; Guevarra, D.; Toma, F. M.; Stein, H. S.; Gregoire, J. M.; Haber, J. A., Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe–Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials 2018. http://doi.org/10.1021/acsaem.8b01377

69) Kirstin, A.; Marco Buongiorno, N.; Andriy, Z.; Lubos, M.; Stefano, C.; Anubhav, J.; Marco, F.; Nicola, M.; Ichiro, T.; Martin, L. G.; Mercouri, G. K.; Michael, F. T.; Sergey, B.; Bryce, M.; Stephan, L.; Ursula, K.; Albert, D.; Eric, T.; Vladan, S.; Aron, W.; Nam-Gyu, P.; Alan, A.-G.; Daniel, T.; Jenny, N.; James, M.; Anant, S.; John, G.; Hong, L.; Ruijuan, X.; Alfred, L.; Lane, W. M.; Andrew, R.; Su-Huai, W.; John, P., Journal of Physics D: Applied Physics 2018. http://doi.org/10.1088/1361-6463/aad926

68) Bai, J.; Xue, Y.; Bjorck, J.; Le Bras, R.; Rappazzo, B.; Bernstein, R.; Suram, S. K.; van Dover, R. B.; Gregoire, J. M.; Gomes, C. P., Phase-Mapper: Accelerating Materials Discovery with AI. AI Magazine 2018, 39 (1).

67) Suram, S. K.; Zhou, L.; Shinde, A.; Yan, Q.; Yu, J.; Umehara, M.; Stein, H. S.; Neaton, J. B.; Gregoire, J. M., Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes. Chemical Communications 2018, 54 (36), 4625-4628. http://doi.org/10.1039/C7CC08002F

66) Newhouse, P. F.; Guevarra, D.; Umehara, M.; Reyes-Lillo, S. E.; Zhou, L.; Boyd, D. A.; Suram, S. K.; Cooper, J. K.; Haber, J. A.; Neaton, J. B.; Gregoire, J. M., Combinatorial alloying improves bismuth vanadate photoanodes via reduced monoclinic distortion. Energ Environ Sci 2018, 11 (9), 2444-2457. http://doi.org/10.1039/C8EE00179K

65) Suram, S. K.; Fackler, S. W.; Zhou, L.; N'Diaye, A. T.; Drisdell, W. S.; Yano, J.; Gregoire, J. M., Combinatorial Discovery of Lanthanum–Tantalum Oxynitride Solar Light Absorbers with Dilute Nitrogen for Solar Fuel Applications. ACS Combinatorial Science 2017. http://doi.org/10.1021/acscombsci.7b00143

64) Newhouse, P. F.; Reyes-Lillo, S. E.; Li, G.; Zhou, L.; Shinde, A.; Guevarra, D.; Suram, S. K.; Soedarmadji, E.; Richter, M. H.; Qu, X.; Persson, K.; Neaton, J. B.; Gregoire, J. M., Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem Mater 2017, 29 (23), 10027-10036. http://doi.org/10.1021/acs.chemmater.7b03591

63) Singh, A. K.; Zhou, L.; Shinde, A.; Suram, S. K.; Montoya, J. H.; Winston, D.; Gregoire, J. M.; Persson, K. A., Electrochemical Stability of Metastable Materials. Chem Mater 2017, 29 (23), 10159-10167. http://doi.org/10.1021/acs.chemmater.7b03980

62) Shinde, A.; Suram, S. K.; Yan, Q.; Zhou, L.; Singh, A. K.; Yu, J.; Persson, K. A.; Neaton, J. B.; Gregoire, J. M., Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Letters 2017, 2307-2312. http://doi.org/10.1021/acsenergylett.7b00607

61) Yan, Q.; Yu, J.; Suram, S. K.; Zhou, L.; Shinde, A.; Newhouse, P. F.; Chen, W.; Li, G.; Persson, K. A.; Gregoire, J. M.; Neaton, J. B., Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl. Acad. Sci. 2017, 114 (12), 3040-3043. http://doi.org/10.1073/pnas.1619940114

60) Green, M. L.; Choi, C. L.; Hattrick-Simpers, J. R.; Joshi, A. M.; Takeuchi, I.; Barron, S. C.; Campo, E.; Chiang, T.; Empedocles, S.; Gregoire, J. M.; Kusne, A. G.; Martin, J.; Mehta, A.; Persson, K.; Trautt, Z.; Duren, J. V.; Zakutayev, A., Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Applied Physics Reviews 2017, 4 (1), 011105. http://doi.org/10.1063/1.4977487

59) Favaro, M.; Drisdell, W. S.; Marcus, M. A.; Gregoire, J. M.; Crumlin, E. J.; Haber, J. A.; Yano, J., An Operando Investigation of (Ni–Fe–Co–Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (2), 1248-1258. http://doi.org/10.1021/acscatal.6b03126

58) Suram, S. K.; Xue, Y.; Bai, J.; Le Bras, R.; Rappazzo, B.; Bernstein, R.; Bjorck, J.; Zhou, L.; van Dover, R. B.; Gomes, C. P.; Gregoire, J. M., Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V–Mn–Nb Oxide System. ACS Comb. Sci. 2017, 19 (1), 37-46. http://doi.org/10.1021/acscombsci.6b00153

57) Hattrick-Simpers, J. R.; Gregoire, J. M.; Kusne, A. G., Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge. APL Mater. 2016, 4 (5), 053211. http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4950995, http://dx.doi.org/10.1063/1.4950995

56) Suram, S. K.; Newhouse, P. F.; Gregoire, J. M., High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS Comb. Sci. 2016, 18 (11), 673–681. http://doi.org/10.1021/acscombsci.6b00053

55) Suram, S. K.; Newhouse, P. F.; Zhou, L.; Van Campen, D. G.; Mehta, A.; Gregoire, J. M., High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships. ACS Comb. Sci. 2016, 18 (11), 682–688. http://doi.org/10.1021/acscombsci.6b00054

54) Shinde, A.; Li, G.; Zhou, L.; Guevarra, D.; Suram, S. K.; Toma, F. M.; Yan, Q.; Haber, J. A.; Neaton, J. B.; Gregoire, J. M., The role of the CeO2/BiVO4 interface in optimized Fe-Ce oxide coatings for solar fuels photoanodes. J. Mater. Chem. A 2016, 4 (37), 14356-14363. http://doi.org/10.1039/C6TA04746G

53) Shinde, A.; Guevarra, D.; Liu, G.; Sharp, I. D.; Toma, F. M.; Gregoire, J. M.; Haber, J. A., Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Appl. Mater. Interfaces 2016, 8 (36), 23696-23705. http://doi.org/10.1021/acsami.6b06714

52) Newhouse, P. F.; Boyd, D. A.; Shinde, A.; Guevarra, D.; Zhou, L.; Soedarmadji, E.; Li, G.; Neaton, J. B.; Gregoire, J. M., Solar fuel photoanodes prepared by inkjet printing of copper vanadates. J. Mater. Chem. A 2016, 4 (19), 7483-7494. http://doi.org/10.1039/c6ta01252c

51) Zhou, L.; Yan, Q.; Yu, J.; Jones, R. J. R.; Becerra-Stasiewicz, N.; Suram, S. K.; Shinde, A.; Guevarra, D.; Neaton, J. B.; Persson, K. A.; Gregoire, J. M., Stability and Self-passivation of Copper Vanadate Photoanodes under Chemical, Electrochemical, and Photoelectrochemical Operation. Phys. Chem. Chem. Phys. 2016, 18, 9349-9352. http://doi.org/10.1039/C6CP00473C

50) Guevarra, D.; Shinde, A.; Suram, S. K.; Sharp, I. D.; Toma, F. M.; Haber, J. A.; Gregoire, J. M., Development of solar fuels photoanodes through combinatorial integration of Ni-La-Co-Ce oxide catalysts on BiVO4. Energy Environ. Sci. 2016, 9, 565-580. http://doi.org/10.1039/C5EE03488D

49) Zhou, L.; Yan, Q.; Shinde, A.; Guevarra, D.; Newhouse, P. F.; Becerra-Stasiewicz, N.; Chatman, S. M.; Haber, J. A.; Neaton, J. B.; Gregoire, J. M., High Throughput Discovery of Solar Fuels Photoanodes in the CuO–V2O5 System. Adv. Energy Mater. 2015, 5, 1500968. http://doi.org/10.1002/aenm.201500968

48) Fenwick, A. Q.; Gregoire, J. M.; Luca, O. R., Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device. Journal of Photochemistry and Photobiology B: Biology 2015, 152, 47-57.

47) Yan, Q.; Li, G.; Newhouse, P. F.; Yu, J.; Persson, K. A.; Gregoire, J. M.; Neaton, J. B., Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting. Adv En Mater 2015, 5 (8), 1401840. http://doi.org/10.1002/aenm.201401840

46) Zhou, L.; Suram, S. K.; Becerra-Stasiewicz, N.; Mitrovic, S.; Kan, K.; Jones, R. J. R.; Gregoire, J. M. Combining Reactive Sputtering and Rapid Thermal Processing for Synthesis and Discovery of Metal Oxynitrides. Journal of Materials Research 2015, 30 (19), 2928–2933. https://doi.org/10.1557/jmr.2015.140.

45) Suram, S. K.; Zhou, L.; Becerra-Stasiewicz, N.; Kan, K.; Jones, R. J. R.; Kendrick, B. M.; Gregoire, J. M., Combinatorial thin film composition mapping using three dimensional deposition profiles. Rev. Sci. Instrum. 2015, 86 (3), 033904-033904. http://doi.org/10.1063/1.4914466

44) Suram, S. K.; Haber, J. A.; Jin, J.; Gregoire, J. M., Generating Information Rich High-Throughput Experimental Materials Genomes using Functional Clustering via Multi-Tree Genetic Programming and Information Theory. ACS Comb. Sci. 2015, 17 (4), 224-233. http://doi.org/10.1021/co5001579

43) Shinde, A.; Jones, R. J. R.; Guevarra, D.; Mitrovic, S.; Becerra-Stasiewicz, N.; Haber, J. a.; Jin, J.; Gregoire, J. M., High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis 2015, 6 (2), 229-236. http://doi.org/10.1007/s12678-014-0237-7

42) Pesenson, M. Z.; Suram, S.; Gregoire, J. M., The Statistical Analysis and Interpolation of Compositional Data in Materials Science. ACS Comb Sci 2015, 17 (2), 130-136.

41) Mitrovic, S.; Soedarmadji, E.; Newhouse, P. F.; Suram, S.; Haber, J. A.; Jin, J.; Gregoire, J. M., Colorimetric screening for high-throughput discovery of light absorbers. ACS Comb Sci 2015, 17 (3), 176-181.

40) Mitrovic, S.; Cornell, E. W.; Marcin, M. R.; Jones, R. J.; Newhouse, P. F.; Suram, S. K.; Jin, J.; Gregoire, J. M., High-throughput on-the-fly scanning ultraviolet-visible dual-sphere spectrometer. Rev. Sci. Instrum. 2015, 86 (1), 013904. http://doi.org/10.1063/1.4905365

39) Jones, R. J.; Guevarra, D.; Shinde, A. S.; Xiang, C.; Haber, J. A.; Jin, J.; Gregoire, J. M., Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts. ACS Comb Sci 2015, 17 (2), 71-75.

38) Shinde, A.; Guevarra, D.; Haber, J. A.; Jin, J.; Gregoire, J. M., Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements. Journal of Materials Research 2015, 30 (3), 442-450. http://doi.org/10.1557/jmr.2014.296

37) Haber, J. A.; Anzenburg, E.; Yano, J.; Kisielowski, C.; Gregoire, J. M., Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Adv. En. Mater. 2015, 5 (10), 1402307. http://doi.org/10.1002/aenm.201402307

36) Soriaga, M. P.; Baricuatro, J. H.; Cummins, K. D.; Kim, Y.-G.; Saadi, F. H.; Sun, G.; McCrory, C. C. L.; McKone, J. R.; Velazquez, J. M.; Ferrer, I. M.; Carim, A. I.; Javier, A.; Chmielowiec, B.; Lacy, D. C.; Gregoire, J. M.; Sanabria-Chinchilla, J.; Amashukeli, X.; Royea, W. J.; Brunschwig, B. S.; Hemminger, J. C.; Lewis, N. S.; Stickney, J. L. Electrochemical Surface Science Twenty Years Later: Expeditions into the Electrocatalysis of Reactions at the Core of Artificial Photosynthesis. Surface Science 2015, 631, 285–294. https://doi.org/10.1016/j.susc.2014.06.028.

35) Gregoire, J. M.; Van Campen, D. G.; Miller, C. E.; Jones, R.; Suram, S. K.; A., M., High Throughput Synchrotron X-ray Diffraction for Combinatorial Phase Mapping. J. Synchr. Rad. 2014, 21 (6), 1262-1268.

34) Yano, J.; Haber, J. A.; Gregoire, J. M.; Friebel, D.; Nilsson, A.; Houle, F., JCAP Research on Solar Fuel Production at Light Sources. J. Synchr. Rad. 2014, 27 (5), 14-17.

33) McCluskey, P. J.; Xiao, K.; Gregoire, J. M.; Dale, D.; Vlassak, J. J., Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys. Thermochimica Acta 2014. http://doi.org/10.1016/j.tca.2014.07.023

32) Gregoire, J. M.; Haber, J. A.; Mitrovic, S.; Xiang, C.; Suram, S.; Newhouse, P. F.; Soedarmadji, E.; Marcin, M.; Kan, K.; Guevarra, D.; Jones, R.; Becerra, N.; Cornell, E. W.; Jin, J., Enabling Solar Fuels Technology With High Throughput Experimentation. Mater. Res. Soc. Symp. Proc. 2014, 1654. http://doi.org/10.1557/opl.2014.29

31) Haber, J. A.; Guevarra, D.; Jung, S.; Jin, J.; Gregoire, J. M., Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni-La-Co-Ce Oxide Composition Space. ChemElectroChem 2014, 10.1002/celc.201402149. http://doi.org/10.1002/celc.201402149

30) Xiang, C.; Haber, J.; Marcin, M.; Mitrovic, S.; Jin, J.; Gregoire, J. M., Mapping Quantum Yield for (Fe–Zn–Sn–Ti)Ox Photoabsorbers Using a High Throughput Photoelectrochemical Screening System. ACS Comb. Sci. 2014, 16 (3), 120-127. http://doi.org/10.1021/co400081w

29) Haber, J. A.; Cai, Y.; Jung, S.; Xiang, C.; Mitrovic, S.; Jin, J.; Bell, A. T.; Gregoire, J. M., Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 2014, 7 (2), 682-688.

28) Haber, J. A.; Xiang, C.; Guevarra, D.; Jung, S.; Jin, J.; Gregoire, J. M., High Throughput Mapping of Electrochemical Properties of (Ni-Fe-Co-Ce)Ox Oxygen Evolution Catalysts. Chem. Electro. Chem. 2014, 1 (3), 524-528. http://doi.org/10.1080/10420150500468024

27) Xiang, C.; Suram, S. K.; Haber, J. A.; Guevarra, D. W.; Jin, J.; Gregoire, J. M., A High Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting. ACS Comb. Sci. 2014, 16 (2), 47-52.

26) Duan, H.; Yuan, C. C.; Becerra, N.; Small, L. J.; Chang, a.; Gregoire, J. M.; van Dover, R. B., High-throughput measurement of ionic conductivity in composition-spread thin films. ACS Combinatorial Science 2013, 15 (6), 273-7. http://doi.org/10.1021/co4000375

25) Xiao, K.; Gregoire, J. M.; McCluskey, P. J.; Dale, D.; Vlassak, J. J., Scanning AC nanocalorimetry combined with in-situ x-ray diffraction. Journal of Applied Physics 2013, 113 (24), 243501.

24) Gregoire, J. M.; Xiao, K.; McCluskey, P. J.; Dale, D.; Cuddalorepatta, G.; Vlassak, J. J., In-situ X-ray diffraction combined with scanning AC nanocalorimetry applied to a Fe0. 84Ni0. 16 thin-film sample. Appl. Phys. Lett. 2013, 102 (20), 201902.

23) Gregoire, J. M.; Xiang, C.; Liu, X.; Marcin, M.; Jin, J., Scanning Droplet Cell for High Throughput Electrochemical and Photoelectrochemical Measurements. Review of Scientific Instruments 2013, 84 (2), 024102.

22) Gregoire, J. M.; Xiang, C.; Mitrovic, S.; Liu, X.; Marcin, M.; Cornell, E. W.; Fan, J.; Jin, J., Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts. Journal of the Electrochemical Society 2013, 160 (4), F337-F342. http://doi.org/10.1149/2.035304jes

21) Xiao, K.; Gregoire, J. M.; McCluskey, P. J.; Vlassak, J. J., A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials. Review of Scientific Instruments 2012, 83 (11), 114901.

20) Ding, S.; Gregoire, J.; Vlassak, J. J.; Schroers, J., Solidification of Au-Cu-Si alloys investigated by a combinatorial approach. Journal of Applied Physics 2012, 111 (11), 114901.

19) Gregoire, J. M.; McCluskey, P. J.; Dale, D.; Ding, S. Y.; Schroers, J.; Vlassak, J. J., Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater 2012, 66 (3-4), 178-181. http://doi.org/10.1016/J.Scriptamat.2011.10.034

18) Tague, M. E.; Gregoire, J. M.; Legard, A.; Smith, E.; Dale, D.; Hennig, R.; DiSalvo, F. J.; van Dover, R. B.; Abruña, H. D., High Throughput Thin Film Pt-M Alloys for Fuel Electrooxidation: Low Concentrations of M (M= Sn, Ta, W, Mo, Ru, Fe, In, Pd, Hf, Zn, Zr, Nb, Sc, Ni, Ti, V, Cr, Rh). Journal of the Electrochemical Society 2012, 159 (12), F880-F887.

17) Zhao, K.; Wang, W. L.; Gregoire, J. M.; Pharr, M.; Suo, Z.; Vlassak, J. J.; Kaxiras, E., Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Letters 2011, 11 (7), 2962-2967.

16) Gregoire, J. M.; Dale, D.; van Dover, R. B., A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Review of Scientific Instruments 2011, 82 (1), 015105.

15) Gregoire, J. M.; Tague, M. E.; Smith, E. H.; Dale, D.; Disalvo, F. J.; Hennig, R. G.; Dover, R. B. V., Phase Behavior of Pseudobinary Precious Metal-Carbide Systems. J Phys Chem C 2010, 114, 21664-21671.

14) Gregoire, J. M.; Dale, D.; Kazimirov, A.; DiSalvo, F. J.; van Dover, R. B., Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. J. Vac. Sci. Technol., A 2010, 28 (5), 1279-1280.

13) Ghosh, T.; Zhou, Q.; Gregoire, J. M.; van Dover, R. B.; DiSalvo, F. J., Pt−Cd and Pt−Hg Phases As High Activity Catalysts for Methanol and Formic Acid Oxidation. The Journal of Physical Chemistry C 2010, 114 (29), 12545-12553. http://doi.org/10.1021/jp101175m

12) Miura, A.; Tague, M. E.; Gregoire, J. M.; Wen, X.-D.; van Dover, R. B.; Abruña, H. c. D.; DiSalvo, F. J., Synthesis of Pt−Mo−N Thin Film and Catalytic Activity for Fuel Cells. Chem Mater 2010, 22 (11), 3451-3456. http://doi.org/10.1021/cm100525e

11) Roncallo, S.; Karimi, O.; Rogers, K. D.; Gregoire, J. M.; Lane, D. W.; Scragg, J. J.; Ansari, S. A., High throughput X-ray diffraction analysis of combinatorial polycrystalline thin film libraries. Analytical Chemistry 2010, 82 (11), 4564-4569.

10) Zhang, Y.; Gregoire, J. M.; van Dover, R. B.; Hart, a. J., Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114 (14), 6389-6395. http://doi.org/10.1021/jp100358j

9) Gregoire, J. M.; Tague, M. E.; Cahen, S.; Khan, S.; Abruña, H. c. D.; DiSalvo, F. J.; van Dover, R. B., Improved Fuel Cell Oxidation Catalysis in Pt1−x Tax. Chem Mater 2009, 22 (3), 1080-1087.

8) Gregoire, J. M.; Kostylev, M.; Tague, M. E.; Mutolo, P. F.; van Dover, R. B.; DiSalvo, F. J.; Abruña, H. D., High-throughput evaluation of dealloyed Pt–Zn composition-spread thin film for methanol-oxidation catalysis. Journal of the Electrochemical Society 2009, 156 (1), B160-B166.

7) Gregoire, J. M.; Kirby, S.; Turk, M.; Van Dover, R., Structural, electronic and optical properties of (Sc, Y) N solid solutions. Thin Solid Films 2009, 517 (5), 1607-1609.

6) Gregoire, J. M.; Kirby, S. D.; Scopelianos, G. E.; Lee, F. H.; van Dover, R. B., High mobility single crystalline ScN and single-orientation epitaxial YN on sapphire via magnetron sputtering. Journal of Applied Physics 2008, 104 (7), 074913.

5) Gregoire, J. M.; van Dover, R., A model for calculating resputter rates in codeposition. Journal of Vacuum Science & Technology A 2008, 26 (4), 1030-1036.

4) Gregoire, J. M.; Lobovsky, M. B.; Heinz, M. F.; DiSalvo, F. J.; van Dover, R. B., Resputtering phenomena and determination of composition in codeposited films. Physical Review B 2007, 76 (19), 195437.

3) Gregoire, J. M.; van Dover, R. B.; Jin, J.; DiSalvo, F. J.; Abruña, H. D., Getter sputtering system for high-throughput fabrication of composition spreads. Review of Scientific Instruments 2007, 78 (7), 072212.

2) Manning, H. L. K.; Gregoire, J. M., An upgraded high-velocity dust particle accelerator at Concordia College in Moorhead, Minnesota. International Journal of Impact Engineering 2006, 33 (1–12), 402-409. http://doi.org/10.1016/j.ijimpeng.2006.09.066

1) Biebighauser, D. P.; Gregoire, J. M.; Ulness, D. J., General counting formulae for factorized time correlation diagram analysis. Physica A: Statistical Mechanics and its Applications 2003, 320 (0), 1-10. http://doi.org/10.1016/S0378-4371(02)01594-7

6) Torrisi, S. B.; Gregoire, J. M.; Yano, J.; Carbone, M. R.; Gomes, C. P.; Hung, L.; Suram, S. K. Artificial Intelligence for Materials Spectroscopy. In Accelerated Materials Discovery: How to Use Artificial Intelligence to Speed Up Development; Luna, P. D., Ed.; Walter de Gruyter GmbH & Co KG, 2022.

5) Gomes, C. P.; Fink, D.; van Dover, R. B.; Gregoire, J. M. Computational Sustainability Meets Materials Science. Nat Rev Mater 2021, 6 (8), 645–647. https://doi.org/10.1038/s41578-021-00348-2.

4) Gregoire, J. M., Unexpected Transitions Yield Interesting Science and High-Performance Materials. Matter 2019, 1 (4), 790-791. http://doi.org/10.1016/j.matt.2019.09.006

3) Gregoire, J. M.; Boyd, D. A.; Guevarra, D.; Haber, J. A.; Jones, R.; Kan, K.; Marcin, M.; Newhouse, P. F.; Shinde, A.; Soedarmadji, E., High Throughput Experimentation for the Discovery of Water Splitting Materials. In Integrated Solar Fuel Generators, Atwater, H.; Lewerenz, H. J.; Sharp, I. D., Eds. 2018; pp 305-340.

2) Suram, S. K.; Pesenson, M. Z.; Gregoire, J. M., High Throughput Combinatorial Experimentation + Informatics = Combinatorial Science. In Information Science for Materials Discovery and Design, Lookman, T.; Alexander, J. F.; Rajan, K., Eds. Springer International Publishing: Cham, 2016; pp 271-300. https://doi.org/10.1007/978-3-319-23871-5_14

1) Chan, C. K.; Tuysuz, H.; Braun, A.; Ranjan, C.; Mantia, F. L.; Miller, B. K.; Zhang, L.; Crozier, P. A.; Haber, J. A.; Gregoire, J. M.; Park, H. S.; Batchellor, A. S.; Trotochaud, L.; Boettcher, S. W., Advanced and In Situ Analytical Methods for Solar Fuel Materials. In Solar Energy for Fuels, Chan, C. K.; Tuysuz, H., Eds. Springer: 2016; pp 253-324.

8) Chen, D.; Bai, Y.; Zhao, W.; Ament, S.; Gregoire, J. M.; Gomes, C. Deep Reasoning Networks for Unsupervised Pattern De-Mixing with Constraint Reasoning. In International Conference on Machine Learning; PMLR, 2020; pp 1500–1509.

7) Bai, J.; Lai, Z.; Yang, R.; Xue, Y.; Gregoire, J. M.; Gomes, C. In Imitation Refinement for X-ray Diffraction Signal Processing, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 12-17 May 2019; 2019; pp 3337-3341.

6) Bai, J.; Ament, S.; Perez, G.; Gregoire, J. M.; Gomes, C. In An Efficient Relaxed Projection Method for Constrained Non-negative Matrix Factorization with Application to the Phase-Mapping Problem in Materials Science, Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Cham, 2018//; van Hoeve, W.-J., Ed. Springer International Publishing: Cham, 2018; pp 52-62.

5) Bai, J.; Bjorck, J.; Xue, Y.; Suram, S. K.; Gregoire, J. M.; Gomes, C. In Relaxation methods for constrained matrix factorization problems: solving the phase mapping problem in materials discovery, International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Springer: 2017; pp 104-112.

4) Xue, Y.; Bai, J.; Le Bras, R.; Bernstein, R.; Bjorck, J.; Longpre, L.; Suram, S. K.; van Dover, R. B.; Gregoire, J. M.; Gomes, C. P., Phase-Mapper: An AI Platform to Accelerate High Throughput Materials Discovery. In The Twenty-Ninth Annual Conference on Innovative Applications of Artificial Intelligence, IAAI: 2017,

3) Ermon, S.; Le Bras, R.; Suram, S. K.; Gregoire, J. M.; Gomes, C. P.; Selman, B.; Van Dover, R. B., Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery. In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence (AAAI-15), North America, 2015,

2) Le Bras, R.; Bernstein, R.; Gregoire, J. M.; Suram, S. K.; Gomes, C. P.; Selman, B.; van Dover, R. B., A Computational Challenge Problem in Materials Discovery: Synthetic Problem Generator and Real-World Datasets. In Proceedings of the Twenty-Eighth Conference on Artificial Intelligence (AAAI-14), Québec City, Canada, 2014,

1) Lebras, R.; Damoulas, T.; Gregoire, J. M.; Sabharwal, A.; Gomes, C. P.; van Dover, R. B., Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling. Proc. 17th Intl. Conf. on Principles and Practice of Constraint Programming 2011, 6876, 508-522.