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ABSTRACT10

We present a database resulting from high throughput experimentation, primarily on metal oxide solid state materials. The
central relational database, the Materials Provenance Store (MPS), manages the metadata and experimental provenance from
acquisition of raw materials, through synthesis, to a broad range of materials characterization techniques. Given the primary
research goal of materials discovery of solar fuels materials, many of the characterization experiments involve electrochemistry,
along with optical, structural, and compositional characterizations. The MPS is populated with all information required for
executing common data queries, which typically do not involve direct query of raw data. The result is a database file that can
be distributed to users so that they can independently execute queries and subsequently download the data of interest. We
propose this strategy as an approach to manage the highly heterogeneous and distributed data that arises from materials
science experiments, as demonstrated by the management of over 30 million experiments run on over 12 million samples in
the present MPS release.
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Background & Summary12

Two primary modalities for public release of large quantities of experimental materials science data are exemplified by i) the13

Materials Data Facility1, 2, which seeks to aggregate data from practically any materials science experiment, and ii) the High14

Throughput Experimental Materials (HTEM)3, 4 and Materials Experiment and Analysis Database (MEAD)5 databases, which15

focus on data management from high throughput experiments within a single institution. This latter type of data management16

has to-date been accessible through a web interface, which does not provide the requisite flexibility for a breadth of use cases.17

For example, specific subsets of the MEAD database have been curated6 to enable adoption of machine learning methods7,18

which contribute to the larger vision of transforming experimental science with modern data science tools.8–10 Assembling such19

a dataset via a web interface is impractical, motivating our effort to enable a representation of the data that supports a breadth20

of use cases. Based on the recently reported event sourced architecture for materials provenance management (ESAMP),11
21

we have transformed the MEAD dataset, including additional data acquired since the original dataset publication, into a new22

database. The resulting database is the Materials Provenance Store (MPS), whose schema, contents, and usage is introduced23

herein. The MPS name reflects not only that it is literally a data store, but also that users may shop for a desired experimental24

materials provenance via PostgreSQL queries. The materials provenance refers to the entire experimental history of each25

material, which entails the sequence of experimental processes that are each described by metadata. The data origination as26

described by MEAD combined with the DBGen ingestion workflow provide the data provenance of each piece of experimental27

data, and the encoded sequence of experimental processes additional provides the experimental materials provenance that28

collectively resulted in the given piece of experimental data.29

By modelling each experimental “Process” and its application to a given materials “Sample”, the high throughput experi-30

ments are tracked via a central ”Sample Process” table, which contains ca. 30 million entries from ca. 24 million combinations31

of sample and process-type, a high level description of the type of experimental process. A breakdown of the number of entries32

for the 13 process types is shown in Table 1. Due to variability in the experimental workflows, different samples may be subject33

to different types of processes. A summary of the number of unique materials samples for each combination of the primary 434

process types for materials characterization is shown in Figure 1.35

Batches of raw and analyzed data are stored in a separate repository, enabling a relatively small PostgreSQL database file,36

whose downloadable compressed size is 4.5 GB and uncompressed size is 20 GB. This file is relatively portable compared37

to the entire dataset, which includes 1.1 TB of compressed raw and analyzed data. These data are packaged as a matter of38



convenience during their generation, with each package receiving a unique digital object identifier (DOI). The 26,105 DOIs39

hosted by CaltechData (data.caltech.edu) are provided as a supporting document. We provide examples of programmatic access40

to the open-source raw and analyzed data based on the results of a given query of the MPS, demonstrating our strategy for agile41

data exploration and efficient utilization of the open source data repository.42

Methods43

The experimental methods for generating the data are described previously, with individual implementations of these methods44

encoded in the Process Details table within the database. For the process types shown in Table 1, the originating process45

for each sample is a “print”, which includes sputter deposition from our custom Kurt J. Lesker combinatorial deposition46

system12 and inkjet printing of mixed precursors using a JetLab Microfab13 or C2Fast14 printer. The “anneal” process47

involves heating in a box furnace with ambient air, a tube furnace with controlled atmosphere, or a rapid thermal processing48

instrument15. A “metr” process entails optical imaging of combinatorial libraries for quality control, and “imag” entails the49

imaging of an individual sample for colorimetric characterization.16 The primary materials property characterization are “eche”,50

electrochemical characterization in a scanning droplet cell;17 “ecqe”, photoelectrochemical characterization with facile redox51

couples;18 “uvis”, ultraviolet-visible optical spectroscopy;19 “pets”, parallel electrochemical operation of catalyst libraries;20
52

and “ecms”, electrochemical measurements with on-line mass spectroscopy data for product analysis.21 The processes intended53

to characterize the composition and structure of materials include “xrds”, x-ray diffraction using a Bruker DISCOVER D8;54

“ssrl”, synchrotron x-ray diffraction;22 and “xrfs”, x-ray fluorescence using a EDAX Orbis Micro-XRF. The final type is “xtrn”,55

which describes a process that was performed by an external collaborator.56

To summarize the types of experimental provenances in the database, we briefly summarize the high throughput experiment57

workflows. A workflow typically commences with a “print” process wherein material is deposited onto a substrate, also known58

as a library plate. The material is typically reactively annealed to form a metal oxide sample via an “anneal” process. A “metr”59

optical imaging process is performed to ensure that material is deposited in the correct location on the library plate. From here,60

the workflows have considerable variability due to the different types of research being conducted with these high throughput61

tools. An electrocatalyst screening workflow could include an “xrfs” process to measure composition, a sequence of “eche”62

processes to characterize activity, and an additional “xrfs” process to see if the electrochemistry changed the composition.63

To discover solar light absorbers, a “uvis” process characterizes the spectral absorption with “xrfs” and “xrds” processes to64

characterize the composition and structure.65

Data Records66

The dataset is available from CaltechDATA.23 Figure 2 shows the database schema as the relationships among tables that are67

described below. The full schema contains additional tables that originate from the ingestion of the MEAD5 database, as68

shown in Figure 3. This database adheres to the FAIR principles ("Findable, Accessible, Interoperable, and Reusable"). The69

data records are findable because a SQL query can be used to concisely and efficiently filter for records of interest. Since70

the database is publicly available for anyone to download, it is accessible. By using PostgreSQL, a common, free database71

management system that is compatible with all major operating systems, the data is interoperable. Finally, the data is reusable72

because the metadata for each experiment and the provenance of each sample is formally tracked, which enables users to query73

the database to answer a wide variety of questions as their research interests change over time.74

Sample Table75

A sample is an individual material whose creation is defined upon the first process in which it can be uniquely identified in the76

lab. When processes are applied to the sample, intentional or unintentional changes to the material may occur, but its sample77

number remains in tact, with its provenance being the sequence of processes applied to it.78

Processes Table79

A Process is any procedure that is done to a sample. This may be a step in its preparation, or it may be an experiment intended80

to characterize the sample.81

Sample Process Table82

The sample-process table underlies the core concept of this database: when a sample undergoes a process, this event can83

generate one or many pieces of process data. There is a many-to-many relation between samples and processes because a84

sample can (and usually does) undergo many processes over the course of its life, and a process can be run on many samples85

simultaneously. This is shown in the bottom row of the diagram below; the connections between samples and processes are86

represented by the purple arrows, and the table names are shown in bold font.87
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Process Data Table88

When samples undergo processes, and data does result from the experiment, this output data is stored in the ProcessData table.89

There is row in the Process Data table for every output file from experiments done in the lab.90

Analysis Table91

This Process Data can be used as the input to Analyses. A row in the analysis table represents the output of a function that92

accepts Process Data of a certain type as an input and returns a figure of merit (abbreviated as FOM) as its output.93

Collections94

Collections are simply groups of samples. Each sample in this database is printed onto a plate. Each plate contains a few95

thousand samples, and although samples are often analyzed independently, it is useful to keep track of which samples are on96

which plate.97

Process Details98

Processes often have some controllable parameters like the temperature or choice of solvent, etc. These input parameters are99

stored in the Process Detail table. Process details are stored in a separate table to make it easy to query for processes that were100

run with the same set of input parameters. Two of the columns in this table, named "type" and "technique," specify the type of101

experiment performed. The "details" column contains a dictionary in json format that contains all of the metadata that was102

recorded for that experiment. This is meant to include all relevant experimental input parameters, like the solution pH or current103

density set point. For each type and technique, the schema of the json column is consistent across all rows. Therefore, the104

metadata schema for each type of experiment can be found by querying for any row in the Process Details table with the type105

and technique of interest.106

Technical Validation107

The database entries result from high throughput experiments and analyses of the resulting data. For experimental data108

describing the synthesis and characterization of materials, the technical quality of the data is monitored via standard operating109

procedures of the instruments. A core tenet of the database presented herein is that further technical validation must be done in110

the context of a specific research purpose, and to avoid injection of data quality assumptions into data analysis, the database111

contains all raw output from the instruments to increase transparency and allow modifications to any quality control and112

validation algorithms. Validation of specific subsets of data are provided in previous work, typically via replication of high113

throughput screening results using traditional experimental methods for catalysts,14, 24–26 photocatalysts,27, 28 and integrated114

photoanodes.29–31 For each of these examples, the instrument control software was written to validate metadata tracking by115

2 primary methods, automated metadata recording and manual data entry with validation. Instrument settings comprise the116

majority of metadata, and extraction and storage of instrument settings was performed by the instrument control software, with117

the resulting metadata file manually checked against instrument settings after each modification to the control software. Some118

manual data entry was required for select instruments, most commonly entry of the sample number, whose manually entry119

was protected against single keystroke errors (and most multi-keystroke errors) via a checksum. The other primary type of120

manual data entry is numerical calibration of instrument components, most notable the reference electrode in electrochemical121

experiments. The lab maintains a data log of all reference electrodes and their history of calibrations to ensure continuity and122

validation against the entries encoded in the metadata.123

Usage Notes124

The data is available in a PostgreSQL database. This format requires three steps to make use of. It also provides the ability to125

use SQL queries to access specific subsets of the data. This makes it easier for researchers to ask specific questions of the data.126

Additionally, when a researcher writes a SQL query to acess a specific subset of the data for a given project, they can simply127

publish the query, and which data they used is very transparent.128

• Download the compressed SQL database dump file (.tar.gz format) from CaltechDATA at https://data.caltech.edu/records/4kk39-129

69x76.23
130

• Install PostgreSQL by following the instructions at https://www.postgresql.org/download/.131

• Extract the .tar.gz file, which will yield a .sql file.132

• Follow the PostgreSQL documentation to create a new database from the .sql file.133

This will create a local copy of the database that we present in this work. The data can be browsed using the DBeaver user134

interface, and SQL queries can be written to return specific portions of the database that are of interest to the researcher.135
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Code availability136

The MPS database was generated using DBgen (v1.0.0a7) (https://github.com/modelyst/dbgen), an open-source framework for137

building scientific databases and pipelines available at https://github.com/modelyst/dbgen. A python API, a command-line138

interface (CLI), and a Jupyter notebook with example queries are available in the Materials Provenance Store Client repository139

(https://github.com/modelyst/mps-client).140
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Process Num. Sample Num. unique
type Processes Samples
print 14,351,200 11,243,172

anneal 10,464,567 9,699,800
eche 2,513,044 640,836
metr 1,104,039 942,062
imag 1,001,728 855,151
uvis 753,627 619,939
ecqe 153,092 74,923
xrfs 152,736 130,915
pets 140,800 71,424
ssrl 125,27 12,527
xrds 8,641 8,538
ecms 360 76
xtrn 7 2

Table 1. The 13 types of experimental processes in the database are listed with the respective number of entries in the Sample
Process table. Since a given sample may undergo several processes of the same type, the number of unique samples represented
by each set of sample processes is also shown. The brief descriptions of process types are as follows: deposition of materials
onto a substrate (print), thermal annealing (anneal), electrochemistry (eche), optical imaging for quality control (metr), imaging
for colorimetric characterization (imag), ultraviolet-visible optical spectroscopy (uvis), 2-electrode photoelectrochemical
characterization (ecqe), x-ray fluorescence (xrfs), parallel electrochemical treatment (pets), synchrotron x-ray diffraction (ssrl),
x-ray diffraction (xrds), integrated electrochemistry and mass spectroscopy (ecms), and externally-sourced experiments (xrtn).

ECHE

UVIS XRDS

XRFS

51,517

4,284751

4,426

429,939

1,429

181

132,845

4,002

683

1,002
442

48
67,885

497,038

Figure 1. Four-way Venn diagram for the 4 primary types of experimental processes showing how many unique materials
samples in the dataset have undergone each combination of process types. The process types are electrochemical
characterization (ECHE), ultraviolet-visible optical spectroscopy (UVIS), x-ray diffraction (XRDS), and x-ray fluorescence
(XRFS)
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Sample

Process

ProcessSample

Process

Data

Analysis

Process

Detail

Analysis 
Detail

Collection

Figure 2. Schema diagram for the Materials Provenance Store. Each rectangle represents a database table, and each arrow
represents a relationship between two tables. A single-headed arrow represents a many-to-one relationship, which is stored in
the database as a foreign key. For example, the blue arrow pointing from Process to Process Detail indicates that there is a
foreign key column in the Process table called process_detail_id, which references the ID column in the Process Detail
table. Therefore, many rows in the Process table can be linked to one row in the Process Detail table. Each double-headed
arrow represents a many-to-many relationship, which is stored in the database as a mapping table. For example, the double
headed yellow arrow between Process Data and Analysis indicates that there is a mapping table (called
process_data_analysis), which has only two columns: a foreign key to the Process Data table and a foreign key to the
Analysis table. Tables and relationships are colored as follows: red for materials samples, blue for processes, green for process
data, and yellow for analyses. The Sample Process table and its relationships, which are core to the fundamental concept of this
database, are shown in purple.

7/8



Process
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Run

JCAP

Experiment

JCAP

Analysis

JCAP

Sub-Analysis

JCAP

FOM File
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Pattern File
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Figure 3. Schema diagram for the ingestion tables in the Materials Provenance Store. This figure can be read in the same way
as Figure 2. The "ingestion" tables, shown in tan, are not meant to be accessed by most users. They exist because the process of
getting data into the Materials Provenance Store is quite complex, and it was useful to store intermediate intermediate linkages
and results as a part of the data ingestion pipeline. Note that the JCAP Analysis table contains the DOIs for some of the
underlying raw data; however, the data in these files is stored in a more accessible manner in the main tables (shown in Figure
2).
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