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Abstract
Combinatorial synthesis of solid state materials comprises the use of automation or
parallelization to systematically vary synthesis parameters. This approach to materials synthesis
is a natural fit for accelerated mapping of composition-structure-property relationships, a central
tenet of materials research. By viewing combinatorial synthesis not as a panacea but rather as a
launching point for holistic design of experimental workflows, we envision a future for
accelerated materials science promoted by the co-development of combinatorial synthesis and
artificial intelligence techniques. To evaluate the suitability of a synthesis technique in a given
experimental workflow, we establish a collection of 10 complementary metrics spanning the
speed, scalability, scope, and quality of synthesis. We summarize the state of the field of
combinatorial synthesis via a critical review of established techniques in the context of these
metrics, which also elucidates opportunities for further development. These opportunities are
shaped by the evolution of combinatorial synthesis in research workflows, spanning initial
deployments for high throughput experimentation to seminal demonstrations of automated
decision making using artificial intelligence. Historical analysis of combinatorial synthesis in the
context of the Gartner hype cycle establishes a recent rise in productivity, placing the field on a
trajectory for realizing new paradigms in accelerated materials science workflows, built on the
foundation of combinatorial synthesis.

Main text
Synthesis is the cornerstone of solid-state materials experimentation. Any synthesis technique
will inherently involve the ability to vary some number of synthesis parameters, most commonly
composition and annealing temperature.  Mapping the relationship between a given synthesis
parameter and a property of interest is a core strategy for both discovering and understanding
materials. “Combinatorial synthesis” generally refers to automating and/or parallelizing materials
synthesis to create a collection of materials with systematic variation of one or more synthesis
parameters.1–3 While this definition does not explicitly address synthesis throughput, the
automation and/or parallelization used to achieve the systematic variation typically results in a
synthesis throughput exceeding that of traditional, manual techniques. As a result, combinatorial
synthesis is often invoked in high throughput experimentation. The role and impact of
combinatorial synthesis and high throughput experimentation has substantially evolved over the



past 30 years and is presently being driven by the adoption of artificial intelligence (AI) to
automate the decision-making aspects of experimental workflows,4 which to-date typically
involves a one-material-at-a-time implementation of combinatorial synthesis.5–8 The trajectory of
AI-governed experimental workflows places new demands on combinatorial synthesis. Herein
we provide an overview of combinatorial synthesis and establish metrics to assess the tradeoffs
among different techniques. These metrics also help evaluate the suitability of a technique for a
given workflow and illustrate how advancements in combinatorial synthesis will usher in a new
era of accelerated materials science.

The original concept of simultaneously synthesizing a series of compositions established
parallelization as a core strategy for combinatorial synthesis in the middle of the previous
century.9 Despite the ingenuity of this approach, the initial impact was limited due to the
throughput mismatch between parallel synthesis and manual, serial metrologies.1✝ By the end of
the century, a suite of parallel characterization techniques enabled the construction of
end-to-end high throughput experimental workflows, creating a boon for high throughput
experimentation in general and combinatorial synthesis in particular.2,10–13 The vast increase in
experiment throughput created anticipation, if not expectation, of a proportional acceleration in
discovery of materials for any target technology.

While high throughput experimentation based on combinatorial synthesis has undoubtedly
accelerated a broad range of materials research efforts,1,3,14 the expectations for immediate
revolution of materials discovery were misguided, in our opinion, due to three primary factors: 1)
There are at least billions of synthesis recipes that may result in materials with unique
properties, and when any sizable fraction of these recipes are within scope for a target
technology, the search space for materials discovery includes millions to billions of synthesis
recipes. Acceleration of experiment throughput as an isolated improvement upon traditional
experimentation can only be impactful if a substantial fraction of the available search space can
be experimentally evaluated. A combinatorial synthesis technique that can achieve throughput
on the order of 10-104 materials per day only provides a meaningful coverage of the materials
search space when operated consistently for years to decades, which generally isn’t possible in
academic research programs. 2) Most established high throughput workflows rely on a single
combinatorial synthesis technique, which inherently limits the materials scope that may be
addressed by the workflow. A single synthesis technique cannot typically produce all possible
materials that are relevant for optimizing a target property. 3) For most materials discovery
efforts, challenges with materials scope are further exacerbated by the hierarchical nature of
devices - a material is only one component of a device. Most target technologies of a materials
discovery project involve devices whose performance is governed not by a single material but
an assembly of materials. Efforts aimed at standalone properties, such as room temperature
superconductivity or lightweight structural materials, are exceptions to this issue. For
technologies ranging from catalysis to electronics, the properties of materials interfaces are as
important or more important than the individual materials properties, and the combinatorial

1✝ We use the term “metrology” to refer to experimental measurement of any property of the
synthesized material, spanning the fundamental properties of composition and structure to a
broad range of performance-related properties.



synthesis space of all possible materials interfaces is exponentially larger than the search space
of individual materials.

By the start of the current century, the hype of high throughput experimentation began to fade in
the face of these formidable challenges to accelerating materials discovery, which mirrors the
historical evolution of combinatorial synthesis in drug discovery.15 The entrance into a proverbial
“valley of despair” resulted in negative opinions of combinatorial synthesis, however we must
recognize that synthesis is only one component of a research workflow. The inability of a given
high throughput experiment to vastly accelerate materials discovery is ultimately a failure of the
workflow. While limitations of a given combinatorial synthesis technique can contribute to that
failure, the responsibility lies in the design of the entire workflow and the associated strategy for
its deployment.

To assess the state of combinatorial synthesis and the opportunities for further development, we
herein provide a critical review of established techniques in the context of how the synthesis
technique may be integrated into experimental workflows. To aid this effort, we establish a set of
metrics by which a combinatorial synthesis technique can be evaluated. The metrics expand
upon the traditional focus on synthesis throughput to include metrics based on the scope of
accessible synthesis recipes, the ability to interface with a breadth of metrologies, and the ability
to incorporate different workflow execution strategies. We then compare the performance of
different combinatorial synthesis techniques with respect to these metrics and discuss the
interplay between advancements in synthesis techniques and the evolution of experimental
workflows. This interplay provides a framework in which we can evaluate the trajectory of
combinatorial synthesis and the prospects for its continued acceleration of materials science.

Combinatorial Synthesis Metrics
The 10 metrics for evaluating a combinatorial synthesis technique are summarized in Table 1.
Starting with the “Speed” category, the most recognizable feature of combinatorial synthesis is
the synthesis throughput in terms of i) the number of unique materials that can be produced in
some lab-scale time period, for example 1 hour or 1 day. A fixation on increasing instantaneous
throughput can lead to shortcomings in 2 other aspects of “speed” that are critical for workflow
efficacy. The automation of equipment maintenance increases the up-time of the synthesis and
improves its long-term throughput, which can be quantified as ii) the number of automatically
synthesized materials per human intervention. For dynamic workflows with on-the-fly design of
experiments, a critical parameter is iii) latency, the time between a new synthesis request being
made and its delivery to the workflow.

The next category of metrics relates to “Scalability” of the technique, first and foremost in terms
of its iv) expense, i.e. the resource intensity per synthesized material, which is a critical
consideration for continual operation of a workflow. The next metric considers v) the scalability
of a material synthesis to a larger sample or different format to enable follow-up metrologies and
validation experiments. Such follow-up experiments are critical to the success of an accelerated
screening workflow. For many materials discovery efforts, such follow-up experiments also entail



studying ensembles and/or interfaces of materials, making vi) the ability to combinatorially
integrate materials another important metric.

To evaluate the generalizability of a given technique, we also consider the experimental
“Scope”. A desirably broad scope requires vii) the ability to realize a broad range of
composition, phase, and morphology in combinatorially synthesized materials. The ensuing
metrology experiments must be compatible with the combinatorially synthesized materials,
which is a shared responsibility of the metrology and synthesis techniques. With respect to
combinatorial synthesis, this compatibility is facilitated by enabling viii) a breadth of materials
formats for integration with electrical, optical, thermal, etc. probes.

The final category pertains to “Quality”. While quality requirements must ultimately be
determined for a specific project, the most fundamental quality metric is ix) the reproducible
purity of the composition, phase, and/or morphology of each synthesized material. For active
quality control, the x) incorporation of in situ monitoring of synthesis can enable rapid
adjustment of synthesis parameters.

Full quantitative evaluation of most to all of these metrics can only be made in the context of a
specific experimental workflow. For the present purposes of comparing various techniques and
identifying new opportunities, we score techniques on a relative scale of “poor”, “moderate”, or
“good”, as summarized in Table 1.

State of the art in combinatorial synthesis

Rather than provide a chronological survey of combinatorial synthesis methods, we highlight
here 4 core, complementary synthesis techniques. Since many techniques can be adapted to
optimize one metric at the expense of another, our approach is to score a technique based on a
small set of representative publications (Table 1, Figure 1) and discuss the key derivatives of the
technique that impact the performance against specific metrics.

Sputter deposition
Combinatorial PVD tools provide fine control of synthesis parameters such as growth
temperature, deposition atmosphere, film thickness, and deposition geometry, enabling
synthesis of thin film composition libraries tailored for a broad range of high-throughput property
and performance characterization. The introduction of the “multiple-sample concept” by Hanak16

used a multi-element target with a single deposition source, planting the seed for further
development of vacuum deposition as a parallel synthesis method capable of producing
electronic-quality materials.1,17,18 Over the decades, various PVD techniques have been
investigated and adopted for deposition of combinatorial libraries, including magnetron
sputtering,19–25 ion-beam sputtering,26 evaporation,27–30 molecular beam epitaxy (MBE),31 and
pulsed laser deposition (PLD).32–35



Among these, combinatorial magnetron sputtering was widely used due to its high deposition
rate, ease of operation, suitability for a wide range of materials, and process compatibility with
industrial applications, which is an asset for translating and scaling discoveries from
combinatorial synthesis. While several efforts have combined temperature and composition
gradients,17,36–38 composition libraries have been the workhorse of combinatorial PVD. Due to
the temperature-dependence of precursor decomposition, combinatorial heating elements have
been more actively developed in chemical vapor deposition.39,40 Equipped with multiple
deposition sources, combinatorial sputtering (Figure 2) is a stalwart of combinatorial synthesis.
With respect to Scalability metrics, while sputter deposition is among the least expensive
vacuum techniques, the expense per synthesized material is “moderate”. The scalability of thin
film synthesis is “good”, and sequential depositions provide “good” interface synthesis
capabilities.

Combinatorial sputtering typically produces a thin film library whose composition varies as a
function of position across the substrate using either wedge-type multilayer approach 23,24 or
co-sputtering technique,20–22 with state of the art cluster tools combining these techniques.25 The
multilayer approach uses robotically-controlled moving shutters to sequentially deposit
overlapping wedge-type thin film layers. The benefits of controlled composition gradients are
balanced by a reliance on thermally-driven interdiffusion of the layers and a lowered throughput
from sequential vs. concurrent deposition. Co-sputtering utilizes deposition gradients of the
different sources to create a continuous composition spread in a single run with intimate mixing
of the library constituents in the as-deposited state. The lack of masks increases utilization of
sputtered material, shortening deposition time and lowering system maintenance, with limited
control of composition gradients obtained through tuning the deposition geometry.22,41,42

Concerning Speed metrics, the parallel deposition of many compositions makes automation
“good”, and with one to several unique composition libraries per day, the throughput is
“moderate”. The latency for synthesis is “moderate” since a new request may require changes to
the deposition sources.

To gain control of anion composition, recent developments in combinatorial sputtering include
control of the partial pressure of reactive gasses such as O2 at the 0.1 mPa level43 and use of
radio frequency sources to atomize gasses such as N2, creating more reactive anions than
those natively generated in the sputter glow-discharge.44 With respect to Scope metrics, the
combined variation of cations and anions results in a large breadth of accessible materials, with
limited control of morphology, resulting in a “moderate” breadth score. The citations in the first
paragraph of this section include dozens of metrologies, resulting in a “good” for this metric.

The most common use of in situ monitoring in combinatorial sputtering is deposition rate
calibration with a quartz-crystal microbalance (QCM),24,28,29,31 which can be used for spatial
profiling of deposition rate22 and amplified with computational modeling to design deposition
parameters for a desired composition gradient.42 For targeted synthesis of specific structures,
scanning reflection high energy electron diffraction (RHEED) equipped in the high-throughput
MBE31 and Combinatorial PLD systems,32,33 has enabled synthesis with atomic layer control and
parallel synthesis of superlattices. A newly developed in situ compositional analysis technique,



low-angle x-ray spectroscopy (LAXS) was combined with RHEED during the synthesis of
heteroepitaxial SrTiO3 - SrTi0.8Ru0.2O3-𝛿 continuous composition spread by PLD, further
demonstrating the combinatorial synthesis with in situ monitoring is a powerful technique for
optimizing heteroepitaxy and composition.45 Other methods to understand and rapidly refine
synthesis include integration of PVD vacuum chambers with scanning probe microscopy,31,46 low
energy electron diffraction (LEED), Auger electron spectroscopy (AES),47 or and Synchrotron
beamlines to utilize x-ray based technique such as angle-resolved photoemission spectroscopy
(ARPES).48 With respect to Quality metrics, physical vapor deposition and sputtering in
particular provide “good” quality, and the availability of in situ monitoring for certain aspects of
material quality results in a “moderate” score.

PVD deposition has also served as the initial synthesis step in techniques aimed at broadening
the scope of thermal processing space via scanning nanocalorimetry49 and laser spike
annealing.50,51 These techniques broaden the purview of combinatorial synthesis, provide insight
into the evolution of phase behavior in materials synthesis, and provide unprecedented access
to metastable materials.

Inkjet printing
For combinatorial synthesis of composition libraries, inkjet printing leverages the speed of
industrial printers for ultra-fast deposition of prescribed mixtures of elemental precursors.
Subsequent reactive annealing, which can generally be performed in parallel for large libraries
of materials, converts the continuum or collection of precursor mixtures into the materials library.
The technique was pioneered by Xiang and Schultz for photoluminiscent materials52 and by
Mallouk for electrocatalysts.53 Application to photoelectrochemical materials was introduced by
Woodhouse and Parkinson,54,55 with subsequent advancements in ink formulations and printing
hardware by Fan and Stucky.56,57

With this strong foundation of prior art, our high throughput experimentation team built
numerous inkjet printing-based materials discovery workflows, commencing with discovery of
metal oxide electrocatalysts.41,58,59 In our implementation of this technique, manual preparation
of the inkjet printer enabled, without human intervention, the automed deposition on 1-10 glass
plates, each containing in excess of 2000 unique compositions as discrete 1𝗑1 mm2 samples
with sub-1 μm thickness.60 The collection of glass plates can include different thickness and/or
duplicates of the printed metal precursors that become unique materials libraries through
variation in thermal processing. Using library designs such as that of Figure 3b and annealing
up to 200 library plates per day in large furnaces, the aggregate daily throughput is ca. 400,000
materials per day, placing this synthesis technique at the pinnacle of thin film synthesis
throughput. The resulting “good” scores for the throughput and automation aspects of the Speed
metrics is balanced by “poor” latency for synthesis using precursors beyond those loaded in the
printer.

The printer utilizes small volumes of (inexpensive) precursor ink per synthesized material. Its
high deposition speed can be utilized to scale synthesis of a select composition, which can also
be achieved by using techniques such as spray or spin coating to deposit a mixed-ink



formulation identified via combinatorial synthesis. Regarding Scalability metrics, these
considerations result in a “good” performance with respect to expense and “moderate” for
synthesis scale-up. The ability to synthesis interfaces is also “moderate”, as demonstrated by
integration of catalysts with light absorbers to prepare libraries of photoanode61,62 or
photocathode63 assemblies (Figure 3), a combinatorial materials integration strategy that
requires light absorber compatibility with the reactive annealing conditions for precursor
conversion.

The strategy of parallel reactive annealing of many mixtures of mixed elemental precursors is
most suited to preparation of metal oxide materials. Metals (via H2 annealing) or sulfides (via
H2S annealing) can also be made if a mutually compatible annealing condition can be identified
for all precursors. The reactive annealing requirements also limit the ability to control material
morphology, especially using state-of-the-art ink formulations that are optimized for ensuring
intimate mixing of elemental precursors.56,57 Expanding the scope of materials that may be
synthesized by this approach requires development of ink formulations and printer settings for
their robust deposition. Combinatorial inkjet printing has been applied to the deposition of
polymer microarrays,64 gas phase catalyst discovery and optimization,65 and compositional
optimization in lead halide perovskite photovoltaic devices.66 Regarding Scope metrics, inkjet
printing is thus “moderate” with respect to breadth and metrology metrics.

The massive synthesis throughput has traditionally limited in situ monitoring, and the propensity
for asynchronous precipitation of precursors poses challenges for controlling phase purity,
leading to “poor” scores for these Quality metrics. These shortcomings may be well addressed
by emerging techniques, such as the accelerated development of printing parameters through
integration of machine vision and Bayesian optimization.67

Beyond inkjet printing, other printing methods are being implemented to deliver controlled
stoichiometries of precursor inks to defined substrate locations, most notably for the synthesis of
well-defined nanoparticles through the use of dip pen lithography.68,69 This approach combines
the parallelization of inkjet printing with precision nanoparticle synthesis via block copolymer
nano-reactors deposited and patterned by scanning probe dip pen lithography. The desirable
combination of throughput and precision synthesis are balanced by the challenges for coupling
synthesis and metrology, a challenge in nanoparticle synthesis that has been addressed for
some metrologies using microfluidic systems, as discussed in the following section.

Microfluidic nanoparticle synthesis
Automated microfluidic synthesis of nanoparticles occurs in microfluidic channels, where
reaction conditions such as reactant droplet size (in segmented flows), temperature profiles,
residence time, and reactant mixing can be finely controlled. The technique has been developed
for a wide range of materials, most notably chalcogenide quantum dots, but also metal halide
perovskite nanocrystals, metal and alloy nanoparticles, oxides, salts, polymer nanoparticles,
and carbon nanoparticles, as recently reviewed.70–72 Regarding Scope metrics, these
demonstrations result in a “good” score for materials breadth. The low quantity of synthesized



material limits the metrologies that can be employed for combinatorial characterization, resulting
in a “moderate” score for the metrology-based metric.

Automated control of the combinatorial process parameters can be integrated with in-line
characterization such as photoluminescence and absorption spectroscopies,73 enabling
real-time characterization of the impact of synthesis parameters on optical properties, from
which nanoparticle composition, size, and size distribution may be inferred.74,75 Consequently,
this synthesis technique is most exemplary in its Quality metrics, earning a “good” bor both
purity and monitoring aspects.

Controlled delivery in multi-stage reactors enable initial nucleation of quantum dots, followed by
subsequent reactant injection to produce continued controlled growth of the quantum dot core,
or deposition of shell materials to form core/shell nanoparticles.76,77 This fine control of
interfaces is unique among combinatorial synthesis techniques but is limited to synthetically
compatible materials systems. The balance of uniqueness and limitations result in a “moderate”
score for the interfaces-based metric. Regarding the other Scalability metrics, the expense per
synthesis is “good” since thousands of experimental conditions can be explored using only
microliters of precursor solutions. For a select recipe, synthesis scale-up may be achieved via
parallel microchannel reactors,70 although this scaling strategy is challenging compared to other
synthesis techniques, resulting in a “moderate” score.

Compared to inkjet printing, the throughput of microfluidic nanoparticle synthesis is lower, while
the latency for responding to new synthesis requests is better, resulting in “moderate” scores for
these Speed metrics. The automated control of many process parameters enables many
syntheses to be performed without human intervention, earning a “good” score for the
automation-based metric.

This synthesis platform is particularly amenable to incorporation of data science for reaction
planning and control. The detailed information on reaction, nucleation, and growth kinetics
obtained from combinatorial experiments can be used to design batch synthesis of target
nanoparticles.75,78 Since synthesis duration can be as low as 3-5 seconds and on-line optical
characterization provides real-time monitoring, this synthesis platform is ripe for machine
learning-based navigation of the synthesis space,73,79,80 which relates to the autonomous
workflows discussed in the following section.

Solution-based synthesis in autonomous workflows
The integration of combinatorial synthesis into autonomous experimental workflows has
included exploration of thermal processing space via laser annealing,81,82 although benchtop
solution-based synthesis instruments comprise the core combinatorial synthesis approach due
to relative ease for robotically coupling synthesis and metrology.5,6,83 The original demonstration
of the Ada platform was based on synthesis of organic transport layers for solar cells via robotic
pipetting of organic hole transport material, dopants, and plasticizers followed by aspiration and
spin coating onto microscope slides with subsequent annealing in a forced convection furnace.6

In the robot-accelerated perovskite investigation and discovery (RAPID) platform, halide



perovskite crystals were grown using a robotic micropipettor with 4 independent channels to
aspirate reagent stock solutions into a glass vial in which the crystals were grown under
programmed heating, shaking, and vortexing.83 In the materials acceleration operating system in
cloud (MAOSIC) platform, perovskite nanoscrystals were synthesized via syringe pump-based
mixing of precursors with subsequent injection into a heated tube.5

The scope of synthesis in each of these platforms is dictated by the several degrees of freedom
in precursor mixing and subsequent processing, and their operation as autonomous workflows
were demonstrated via identification of local maxima of a performance metric in a 2 or
3-dimensional search space. Given these similarities, these techniques share the same scoring
against the combinatorial synthesis metrics, with “moderate” performance with respect to the
Speed metrics for throughput and materials per human intervention, which is on the order of
10-103 materials. Per the purpose of enabling autonomous experimentation, these techniques
feature “good”, very-low latency.

The miniaturization of serial synthesis provides low resource intensity, and while the methods
should be amenable to scale-up, that capability was not practiced in these initial
demonstrations. While the spin coating technique can nominally be extended to multiple layers
of materials for integration studies, largely these techniques produce isolated samples to-date.
The resulting expense-based and scale-up-based Scalability scores are “good”. The interface
synthesis score is “poor”, as this remains an active area for development.

Each workflow includes metrology but the coupling of many metrologies to these synthesis
platforms remains an area under active development. The resulting “moderate” score for
metrology-based Scope metric. Similarly, each synthesis platform is tailored for a specific type
of material morphology and chemistry, but requires reconfiguration to support different
morphologies, resulting in a “poor” score for materials breadth. We anticipate that these metrics
will be substantially improved in the coming years as the scope of individual autonomous
workflows expands.

Regarding material quality and the real-time monitoring thereof, the performance for any single
synthesis recipe can vary substantially, resulting in a “moderate” score for the purity-based
Quality metric. The virtue of autonomous synthesis is that the recipe can be optimized without
human intervention, creating a new paradigm of quasi-real-time monitoring that earns a “good”
score for the monitoring-based metric.

Evolution of workflows
To conceptualize how the advancement in synthesis may enable new modes of
experimentation, we consider the evolution of combinatorial synthesis in the context of
experimental workflows. Figure 6a-d illustrates this evolution with a series of implementations of
the three fundamental steps of i) materials synthesis, ii) metrology to measure any number of
materials properties, and iii) learning from prior data to design the next generation of
experiments. This series of workflows provide a high-level view of the evolution of combinatorial
synthesis, and to further visualize this evolution, Figure 6e provides the publication history for



combinatorial synthesis-related research. Figure 6f also provides the approximate chronology of
the field in terms of the Gartner hype cycle,21 which provides a high level description of the
development of a technology from an “initial trigger” to “lasting productivity” and was recently
applied to materials research in the context of machine learning.85

Compared to the traditional workflow of manual, serial iterations through the steps (Figure 6a),
parallel and/or automated combinatorial synthesis enables efficient preparation of materials,
which upon coupling to parallel and/or automated metrologies enables high throughput
experimentation (Figure 6b). The acceleration to knowledge generation for such a workflow is
not commensurate with the acceleration of experiments because the marginal knowledge gain
per experiment cannot compete with the manual, hypothesis-driven design of experiments in
traditional workflows (Figure 6a). The establishment of combinatorial synthesis and metrology
techniques provided the “technology trigger”, and initial demonstrations of high throughput
workflows created considerable hype and inflated expectations. These expectations could not
be met with the inherent mismatch between the rate of data generation and knowledge
generation, leading to the onset of the “valley of despair” at the turn of the century.

Figure 6b is not meant to imply that high throughput experiments cannot be hypothesis-driven,
but rather that many initial implementations of high throughput experiments had a primary focus
of demonstrating fantastic experimental throughput, which is natural for the “technology trigger”
phase of the field. Advancement of the field through the “valley of despair” has proceeded with 2
complementary implementations of combinatorial synthesis. By removing the throughput-focus
of workflow design, high throughput experimental workflows (Figure 6b) have been effectively
deployed to answer specific research questions.

In the past decade, the mismatch between high throughput experiments and learning-based
design of experiments has also been addressed through incorporation of AI to automated
decisions. Combined with full synthesis-metrology automation, the resulting so-called
“autonomous”, “closed-loop”, or “self-driving” workflows (Figure 6c) use machine learning-based
identification of experiments with optimal expected value by updating a predictive model with
every iteration through the workflow.6,8,86 This single-material-per-iteration workflow does not
inherently benefit from much of the parallelization in materials synthesis, although one exemplar
adaption of the autonomous strategy combines parallel synthesis with AI-driven selection of
metrology experiments that have relatively high resource intensity.87

Collectively, these modern implementations of combinatorial synthesis have enabled the field to
enter the “slope of enlightenment” phase of the Gartner hype cycle. The corresponding increase
in research productivity is reflected by the recent up-tick in publication rate (Figure 6e). We
describe below the steps required to establish next-generation workflows (Figure 6d) wherein
accelerated experiments more substantially generate knowledge and enable the continued
growth in productivity.



Outlook
The principled implementation of combinatorial synthesis is poised to accelerate materials
discovery via continued co-development with the other components of an automated
experimental workflow. The throughput of combinatorial synthesis, which has traditionally been
measured as the acceleration with respect to traditional methods, should be considered in the
context of both the relative throughput of the pertinent metrologies and the fraction of the search
space that can be accessed. Quantifying the accessible synthesis space, both globally and with
each existing synthesis method, will be a great asset for designing future workflows. Synthesis
recipes are typically documented as a sequence of steps, each annotated with parameters and
observables. This type of data is naturally represented by a directed graph with a node for each
step.88–90 By establishing the set of relevant permutations of synthesis steps and the pertinent
granularity of the process parameters, for example what change in temperature or composition
is sufficient to constitute a new material, the size of the materials synthesis space could be
estimated.

For machine learning-guided experiments, the community must map out the tradeoffs between
low latency and breadth of synthesis space that can be accessed without human intervention.
The Pareto front of these metrics will not only facilitate judicious choice of a synthesis method
for a given project but also help guide the development of new synthesis tools that are more
amenable to integration in highly automated workflows. In conjunction, development on the
AI-guided design of synthesis recipes will be critical, for which progress is rapidly being made,
for example with generative models based on recipes mined from the scientific literature.91

While workflows that integrate combinatorial synthesis with a single metrology can provide
effective and rapid exploration of the synthesis search space, such approaches are inherently
limited in aiding materials discovery efforts wherein performance evaluation requires multiple
metrologies, for example because the target technology requires multiple functionalities from a
component material. To leverage the power of combinatorial synthesis for such materials
discovery efforts, workflow development should focus on automated integration of multiple
techniques to increase the fluidity of workflows.92 The mechanics of multi-technique integration
have important consequences for operational resource intensity and the ability of the workflow
to adapt to generated knowledge. Combinatorial synthesis techniques often efficiently utilize
resources via miniaturization of synthesis, although some workflows may be more amenable to
automation via humanoid robotics that can leverage the breadth of metrologies that have been
developed for human operators.33 Regardless of the mechanics, increasing the purview of
automated workflows will require development of modular, adaptive instrument control
software94,95 to enable hierarchical decision making,82 thereby increasing the flexibility of robotic
experimentation.

While decision-making is central to automation of workflows, advances in AI methods are also
needed for other processes, from quality control and anomaly detection to data interpretation
and communication. While the autonomous workflows to-date perform optimization within a
given search space, ultimately we want a higher grade of scientific knowledge, which may take



the form of symbolic composition-processing-property relationships96 or simultaneous
machine-learning of the appropriate physical model along with its parameters.97

As we continue making advancements in combinatorial methods, we must also remain humbled
by the vast combinatorial space of all possible materials and all properties of interest. Consider
the purview of any single workflow to-date, which may address 0.1% of the materials and 0.1%
of the properties, collectively covering 1 part per million of the global material-property space. A
recent survey highlighted that that span between when a material is discovered and when it is
deployed can be multiple decades, often because the most superlative performance attributes
of the material were not evaluated at the time of discovery.98 Negative results have been shown
to carry value in the context of machine learning,99 a value proposition for universal materials
data management4 that is amplified by the notion that one technology’s trash materials may be
another technology’s treasure. Expert human scientists build chemical intuition to formulate
hypotheses and recognize the potential in previously-overlooked regions of the
material-property space. A new generation of AI for science 100 may produce the analogy of
these skills in machines, which will enable workflows to more effectively capitalize on the power
of combinatorial synthesis.



Tables
Table 1: The description of 10 synthesis metrics and respective evaluation of 4 combinatorial
synthesis platforms. Sputter deposition is a physical vapor deposition technique and has been a
mainstay in combinatorial materials synthesis. The 3 other techniques are related through their
use of wet chemistry but are complementary in the format of synthesized materials and their
focus on parallelization-based throughput enhancement vs. on-the-fly adaptation of the
synthesis recipe.

Combinatorial synthesis metric Sputter
Deposition

Inkjet
Printing

Microfluidic
Nanoparticle

Synthesis

Autonomous
Solution

Synthesis

Speed / throughput: Number of unique materials per day moderate good moderate moderate

Speed / automation: Number of synthesized materials per
human intervention good good good moderate

Speed / latency: Low latency for new synthesis requests moderate poor moderate good

Scalability / expense: Low resource intensity per
synthesized material moderate good good good

Scalability / scale-up: Transferability of synthesis recipe to
create larger replicates for detailed and/or device testing good moderate moderate good

Scalability / interfaces: Ability to integrate multiple materials
to study interfacial properties good moderate moderate poor

Scope / breadth: Breadth of accessible composition, phase,
and morphology within a single instrument configuration moderate moderate good poor

Scope / metrology: Compatibility of synthesized materials
with a breadth of metrologies good moderate moderate moderate

Quality / purity: Purity of synthesized materials with respect
to composition, phase, and/or morphology good poor good moderate

Quality / monitoring: Ability for in situ monitoring of the
material to actively control synthesis moderate poor good good



Figures

Figure 1: The performance of combinatorial synthesis techniques with respect to 10 metrics.
The metrics and categorical scores are noted in the legend (bottom left). For each of 3
combinatorial synthesis platforms, the 10 axes are labeled with abbreviations of the metrics.
Sputter deposition and microfluidic nanoparticle synthesis are “moderate” to “good” in all
categories, making them broadly-applicable synthesis platforms for materials of their respective
thin-film and nanoparticle format. Inkjet printing offers an unrivaled combination of synthesis
throughput and low resource intensity per material but is not amenable to real-time quality
monitoring. The priority of solution-based synthesis in autonomous workflows is low latency,
which to-date has been achieved with a limited scope of materials available at low latency.



Figure 2: Overview of sputter deposition in combinatorial materials discovery workflows,
reproduced from Ref. 1. The deposition strategy is designed to produce the desired range of
compositions (left). The deposition technique may involve lithographically-defined
samples/sensors, deposition masks, and co-sputtering to achieve the composition library in a
format suitable for metrology (middle). After deposition, parallel processing of the entire library
completes the synthesis (right). The throughput and breadth of the resulting materials produce
rich datasets for data-driven discovery (bottom). Each circular outline of a materials library is
nominally a 75 or 100 mm-diameter wafer.



Figure 3: Example implementation of inkjet printing for combinatorial synthesis of
catalyst-semiconductor interfaces. a. The composition library is designed based on all mixtures
of 4 elements with 10% intervals in elemental concentrations. The composition points are
colored using the cyan, magenta, yellow, and black color scheme. b. The printing instructions
are encoded as color images where each discrete sample is colored according to composition
with saturation indicating the catalyst thickness. c. A photograph of the material library
synthesized atop a uniform semiconductor layer. d. Metrology includes the performance of the
semiconductor-catalyst interface, whose compositional variation is shown in the composition
tetrahedron (top) and a flattened representation (bottom).



Figure 4: Example microfluidic synthesis of compositionally varied CsPbX nanocrystals (X: Cl,
Br, I and Cl/Br and Br/I mixed hilides).  (a) schematic representation of the robotically controlled
syringes generating segmented droplets containing varying stoichiometry of reactants to the
heated zone, with in-line absorbance and fluorescence detection. (b) photographs of the
produced nanoparticles after photoexcitation. (C) Representative PL spectra as a function of
halide composition, collected in-line during synthesis.78



Figure 5: Implementation of solution-based synthesis in an autonomous workflow. The robotic
execution of thin film synthesis provides exceptionally low latency for new synthesis requests,
which are made automatically upon updating a decision algorithm based on the previous
material’s measured performance. Reproduced from Ref. 6.



Figure 6: The trajectory of combinatorial synthesis. a. The high level schematic of a traditional
materials experiment workflow. Implementations of combinatorial synthesis include b. massive
parallelization and/or automation in workflows focused on high throughput experimentation; c.
one-at-a-time synthesis enabling sequential learning, typically via AI-based selection of the next
experiment; and d. a combination of these approaches coupled with hypothesis-based design of
experiments, which is envisioned as the future of combinatorial synthesis. e. On 6 August 2022,
Web of Science searches were performed to provide the annual publication count. The
“autonomous” publications contain "autonomous materials" or the combination of “materials”
and "autonomous synthesis". The “combinatorial and high throughput” publications contain
"combinatorial materials" or a combination of “materials” and "combinatorial synthesis”, "high
throughput experimentation", or "high throughput synthesis". f. Approximately aligned with the
publication timeline, the phases of the maturity of combinatorial synthesis are indicated, where
the phrases in quotation marks refer to the the first 4 phases of the technology life cycle in the
Gartner hype cycle model.21 The quasi-steady-state phase of “Plateau of Productivity” is not
shown as productivity from combinatorial synthesis has yet to plateau.
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